Causal compactification and Hardy spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Causal Compactification and Hardy Spaces for Spaces of Hermitian Type

Let G/H be a compactly causal symmetric space with causal compactification Φ : G/H → Š1, where Š1 is the BergmanŠilov boundary of a tube type domain G1/K1. The Hardy space H2(C) of G/H is the space of holomorphic functions on a domain Ξ(C) ⊂ GC/HC with L-boundary values on G/H. We extend Φ to imbed Ξ(C) into G1/K1, such that Ξ(C) = {z ∈ G1/K1 | ψm(z) = 0}, with ψm explicitly known. We use this ...

متن کامل

Causal Compactification of Compactly Causal Spaces

We give a classification of causal compactifications of compactly causal spaces. Introduced by Ólafsson and Ørsted, for a compactly causal space G/H, these compactifications are given by G-orbits in the BergmanŠilov boundary of G1/K1, with G ⊂ G1 and (G1,K1, θ) a Hermitian symmetric space of tube type. For the classical spaces an explicit construction is presented.

متن کامل

Weak Hardy Spaces

We provide a careful treatment of the weak Hardy spaces Hp,∞(Rn) for all indices 0 < p < ∞. The study of these spaces presents differences from the study of the Hardy-Lorentz spaces H(R) for q <∞, due to the lack of a good dense subspace of them. We obtain several properties of weak Hardy spaces and we discuss a new square function characterization for them, obtained by He [16].

متن کامل

Operator Valued Hardy Spaces

We give a systematic study on the Hardy spaces of functions with values in the non-commutative L-spaces associated with a semifinite von Neumann algebra M. This is motivated by the works on matrix valued Harmonic Analysis (operator weighted norm inequalities, operator Hilbert transform), and on the other hand, by the recent development on the non-commutative martingale inequalities. Our non-com...

متن کامل

Nagata Compactification for Algebraic Spaces

We prove the Nagata compactification theorem for any separated map of finite type between quasi-compact and quasi-separated algebraic spaces, generalizing earlier results of Raoult. Along the way we also prove (and use) absolute noetherian approximation for such algebraic spaces, generalizing earlier results in the case of schemes. To the memory of Masayoshi Nagata

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1999

ISSN: 0002-9947,1088-6850

DOI: 10.1090/s0002-9947-99-02101-7